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The Stewartson layer of a rotating disk of finite radius 

A.I .  van de V O O R E N  
Department of  Mathematics, University of Groningen, P. 0. Box 800, 9700 AV Groningen, The Netherlands 

Abstract. It is shown that if a disk of finite radius and the surrounding medium rotate coaxially with slightly 
different angular velocities, an axial layer in the form of a cylindrical shell exists at the edge of the disk. This shell of 
thickness O(E ~/3) has length O(E -~) in axial direction, where E is the Ekman number. Its most characteristic 
element is the axial velocity of O(E 1/6) which is larger than everywhere else in the field. We calculate the velocity 
components and the pressure in this layer. 

I .  Introduction 

In 1957 Stewartson published a paper [1] in which he considered the shear layers existing 
between two coaxial rotating planes of which the center disks rotate with a slightly different 
angular velocity. He found that if the deviations of the angular velocities of the disks from 
that of the planes are equal but opposite, a shear layer of thickness E 1/3 exists, while if the 
deviations are equal in the same sense an additional layer of thickness E 1/4 appears. This last 
layer is necessary in order  to fit the azimuthal velocity of the inner region to that of the outer  
region. In the following such shear layers will be denoted as Stewartson layers. E is the 
Ekman number.  

Greenspan gave in his monograph [2] a clear account of these Stewartson layers while 
Moore  and Saffman [3] presented an analysis of different possibilities for a variety of 
situations. Hide and Titman [4] performed an experimental investigation on a rotating disk 
of finite radius placed in a cylindrical tank which itself is rotating with a slightly different 
angular velocity. They showed the existence of the Stewartson layer. 

In the present investigation a disk of radius a rotates with an angular velocity 1) in an 
unbounded  medium which itself rotates coaxially with angular velocity ( 1 - e ) f l .  Our  
problem will be linearized in the small Rossby number e. The configuration is clarified in 
Fig. 1, where the various regions of the flow field are indicated. 

The rotation of the medium can physically be realized by thinking of a cylindrical tank 
rotating with an angular velocity (1 - e)fl.  Top and bot tom of the tank must have a distance 
to the disk larger than O(E- 1) in order  that the Stewartson layer of the disk is not influenced 
by top and bot tom of the tank (see also [3]). 

It will be shown that for our configuration there exists a Stewartson layer of thickness E 1/3. 
There  is no layer of thickness E ~/4 since at both sides of the Stewartson layer (regions III and 
IV) the angular velocities are equal, viz. ( 1 -  e)F~. Velocity and pressure distributions are 
dependent  upon a similarity parameter  ~" = z/r~, where r~ is the stretched radial coordinate 
in the Stewartson layer. In this way expressions for velocity and pressure distributions are 
derived in the form of integrals, which have been evaluated by Romberg integration. 

At the point z = 0, r I = 0, which is the point, where the Stewartson layer is joined to the 
Ekman layer [3], there exists a logarithmic singularity in the pressure. This singularity is 
responsible for the deflection of the boundary layer flow to the axial flow in the Stewartson 
layer. 
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Fig. 1. The  configuration.  I = E k m a n  layer, I I  = Stewar tson layer, I I I  = inner  region,  IV  = ou te r  region,  V =  uppe r  
region.  

The Stewartson layer II has small effects upon the region III and IV in the same way as 
the Ekman  layer I induces an axial velocity in region III. 

2. General equations 

For  an axially symmetric configuration the dimensionless equations of motion are in an 
inertial system of reference: 

u -~r + w Oz r = - 0--7 Or 2 ~ r  + Oz2J  ' 

U -~r + W oz  + - = E + \ r ]  + r [ Or 2 -~r OZ 2 J ' 

ow ow op +e o2w+l ow o2w  
U ~ + W OZ aZ [ a r  2 r c3--~ + tgz 2 J ' 

(2.1) 

while the equation of continuity is 

1 0 Ow 
r a r  (ur)  + az  = 0 .  (2.2) 

u, v and w are the radial, azimuthal and axial velocities, respectively, p is the pressure, 
E = v / ~ ~ a  2 the Ekman number  with v the kinematical viscosity coefficient. Lengths have 
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been made dimensionless with a, velocities with lqa and the pressure with pl~2a 2 where p is 
the fluid density. In order  to satisfy the equation of continuity a stream function tO is 
introduced by 

10tO 10tO 
u - w - (2.3) r Oz ' r Or 

The  boundary  conditions are 
at the disk 

z = 0 ,  r < l :  u = 0 ,  v = r ,  w = 0 ,  

at infinity 

1 
V~zZ+rZ---*~: u---*O, v - - - * ( 1 - e ) r ,  w---~O, p - - - ~ ( 1 - e ) 2 r  2. 

(2.4) 

3. The Ekman layer 

Since the Rossby number  is infinitely small, all deviations from the original flow will be 
proport ional  to e. Introducing the boundary layer coordinate ~ = E-~/Zz, we may write 

1 1 
to = ~ eE'/2rZh(~.) ,  u = ~ e r h ' ( ~ ) ,  v = r -  e rg (Z) ,  

1 (3.1) 
w =  - e E ' / Z h ( ~ . ) ,  p = ~ ( 1 - 2 e ) r  z . 

Substitution in the equation (2.1) leads to 

- h ' +  4g = 4 ,  h'  + g " =  0 ,  (3.2) 

while the third equation (2.1) shows that Op/O~.= O(E) .  The linearization in (3.2) is valid 
for lel < o ( 1 ) .  Boundary  conditions for (3.2) are 

•=0 :  h = 0 ,  h ' = 0 ,  g = 0 ,  

(3.3) 
~--*~: h'----~0, g---~l . 

By elementary methods the solution of this system is obtained as 

g = 1 - e -z cos ~ ,  h = 1 - e-Z(sin Z + cos ~'). (3.4) 

We now investigate whether the boundary layer exists also for r > 1 as is the case for a 
rotating disk in a fluid at rest, see van de Vooren and Botta [5]. The boundary conditions 
(3.3) are replaced outside the disk by 

~ = 0 :  h = 0 ,  h " = 0 ,  g ' = 0 ,  

E---*~: h'---~0, g---*l . 
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By the same e lementary  methods as used earlier, it is found that the only solution is g = 1, 
h = 0. This means that outside the disk we can only have the original flow with v = (1 - e ) r .  

Hence ,  at r = 1 the Ekman  layer suddenly ends, which means that there occur large 
changes in radial direction and this gives rise to a Stewartson layer. 

Finally, we calculate the torque acting on the disk. The tangential shear stress at the disk is 

7- o = p[~2a2E1/2 0___O_° 
a Z  

and the torque is M = 27ra 3 f l  ~.0r2 dr. 

With O v / O z  = - e r g ' ( O )  and g ' (0)  = 1, we find 

1 
M = -  -~ e ' r rp~2aSE 1/2 . (3.5) 

A negative value of M has a decelerating effect on the disk. 

4. Equations in the Stewartson layer 

The scaling of the various quantities in the Stewartson layer can be taken most easily f rom 
Greenspan  [2], pp. 98 and 99. To comply with the rapid changes in radial direction, a 
stretched coordinate r 1 is introduced by 

r = 1 + E1/3rx . (4.1) 

r I and z are the independent  variables in the Stewartson layer. The dependent  variables are 
expanded as follows 

qj = eE1/2qf i  + eES/6~b2 + . . .  

u = e E X / Z u l  + e E S / 6 u 2  + • • • 

v = (1 - e ) r  + e E 1 / 6 v l  + eE1 /202  + " "  (4.2) 

w = e E 1 / 6 w 1  + e E 1 / Z w 2  + " • " 

1 p = (1 -  )2r2 +  el' pl +  e"6p2 + . . . .  

This gives an axial flux O ( E  1/2) which is the deflected radial flux of O(E 1/2) existing in the 
E k m a n  layer. The second terms in the expansion to E are a factor E 1/3 smaller than the first 
terms. This is in agreement  with (4.1) and (3.1) and, moreover ,  the second term in the 
expansion of w is required to match the term w = - e E  1/2, present in the inner region as 

follows f rom (3.1) and (3.4). 
Substitution of (4.2) into the equations (2.1) and (2.2) leads to the following set of 

equations for the first approximation 

Opl 0201 Op 1 __ 0 2 W 1  On  1 OW 1 

2 v 1 -  O r 1 '  2 u l -  Or~ ' Oz Or~ ' Or1 + Oz = 0 "  (4.3) 
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The  terms of the third equation come from terms in (2.1) which are O ( e E l / 2 ) ,  while the 
neglected non-linear terms in this equation are O(e2El /3) .  Hence,  it is required that  
[ e l < O ( E 1 / 6 ) .  

For  the second approximat ion the following set is obtained 

0p2 02/32 01) 1 Opz 02W2 O W  1 OU 2 O W  2 

202 = O r  I , 2 u 2 -  2 + - - ,  - - - - - -  c3r I Or 1 02" O r  1 O r  I O z  Or~ + " ' - -  + 

This approximat ion is only valid if [e[ < 0(E1 /2 ) .  

From equations (2.3) and (4.1) we find 

+ b/1-----O. 

(4.4) 

O 1#1 a 1#2 O 1#1 01#1 01#2 O 1#1 
u l -  Oz ' u 2 -  Oz rl Oz ' W l -  Or a ' w 2 -  Or 1 + rl Or I (4.5) 

El iminat ion of all variables except 1#1 and 1#2 yields as fundamental  equations 

- -  - -  06~02 021#2 051#1 061#1 "+ 4 021#1 = 0 - -  + 4 - -  = 3 - -  (4.6) 
Or 6 Oz z ' Or 6 Oz z Or~ " 

The E k m a n  layer which has th ickness  O ( E  1/2) is reduced in the z-coordinate to z = 0. Hence  

z = 0 must  correspond to the outer  edge of the Ekman  layer. Moreover ,  the equations in the 
E k m a n  layer are only modified by a stretched coordinate 

r = 1 + E1/2~,  

since only then the second derivatives to r become of the same order  as second derivatives to 
z. Thus,  in the r l -coordinate  this modification occurs at r I = 0. For r I < 0 we have at the 
outer  edge of the E k m a n  layer using (3.1), (3.4) and (4.1) 

1 ~E1/2 1 r,7/6 2 Z = 0: 1# = ~ + eES/6rl + -~ e L  r 1 . 

Thus 1#1 = 1, 1#2 = r l ,  W l  = 0, 1422 = - 1 .  

For  r I > 0 where there is no E k m a n  layer we have 

1#1 = 0 ,  1#2 = 0 ,  W 1 = 0 ,  W 2 ~--- 0 .  

Hence ,  the boundary  condition for 1#~ is 

1 1 
Z = O: 1#1 = 2 {1 --  U ( r l )  } = ~ U ( - r l )  , ( 4 . 7 )  

where U(x)  is the unit step function 

U ( x ) = l  f o r x > 0 ,  U ( x ) = O  f o r x < 0 .  

The  other  boundary  conditions are 

z --> oo: 61 is b o u n d e d ,  
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rl --~ --oo: 01 is b o u n d e d ,  

r l ~ o o :  0 1 ~ 0 .  

Boundary  conditions for 02 will be given later. 

5. Main  solut ion in the Stewartson layer 

The s t ream function 0, is solved by aid of Fourier t ransformation 

F,(to,  z ) -  J_~ 0 , ( r l ,  z) e '°'rl dr  I . 

We take Im w < 0 since 01 ~ 0 for rm --> -o~. 
The  t ransformed equat ion becomes 

4 dzF1 - w6F1 = O. 
dz 2 

The  boundary  condition for z = 0 is 

F,(w, 0 ) =  1 ffl ei~Orl 1 
v ~  ~ (1 - u ( r l ) )  dr ,  - 2 i t o x / ~  " 

Hence ,  

F,(to, z) - 1 _[,o[3z/2 
2 i t o ~  e for z i> 0 .  

Transforming back we obtain 

1 f~oo e-iWrl - -  e -I~'Pz/2 d o  , (5.1) O,(r,, z) -- ~-~ to 

where the path of integration has to pass below the pole to --O. We write 

f ~  1 ~ e  '~r' 1 e-iC°r' (e -]'°laz/2 1) d t o +  ~ - ~  to - - -  d to .  Ol(rl ,  Z) = ~ -~ to 

In the first integral to = 0 is no longer a singular point, so we can integrate straight along the 
to-axis. The integration path of the second integral is closed by the infinitely large semi-circle 
in the half plane Im to > 0 if r 1 < 0 and by the semi-circle in the half plane Im to < 0 if r ,  > O. 
By the residu theorem this gives ½U(-r l )  as a result for the second integral. Then 

1 cos tor I - i s i n  toq (e_l~?z/2_ 1) dto + 2 U ( _ r l )  " 
~'l(r,,  z) = ~ - ~  to 

Since the integrand with cos tor 1 is odd in to it gives no contribution and we retain 

1 sin tor, (1 - e -~3~'~) dto + ~ U ( - r , ) .  (5.2)  
~]l (r l ,  z) = ~ to 



Stewartson layer of  a finite disk 137 

For  z---> ~ the value of the integral is 7r/2 if r I > 0  and - ~ r / 2  if r 1 < 0 .  This means that 

1 
~bl(rl, ~ ) =  

1 
~0,(0, z) = 

for all finite values of r 1 and 

for all finite values of z. 

The integral in (5.2) is an odd function of r I and hence needs only to be calculated for r I > 0. 
Putting tor~ = y, we can write for r I > 0 

1 f0 = sin y ~bl(rl, z) = ~ - - 7 -  (1 - e -y3"/2) dy 

1 1 f o  sin y e_y3~./2 dy . 
4 2~" y 

(5.3) 

This formula shows that ~1 only depends upon the similarity parameter  

7 = z / r ~ .  (5.4) 

Moreover ,  for rl---> 0, ~'---> ~, (5.3) gives again ffl = 1/4, so (5.3) is valid for r I />0.  For  r 1 <~0 
we have 

1 1 f ~  sin y ey3~./2 d y .  
~bl(r 1 , z ) = ~  + ~  Y 

For  any finite value of z and r 1 varying from - ~  to +~ ,  ~b I varies from 1/2 to 0. Thus, the 
axial mass flow in the Stewartson layer is for any finite z equal to 2~reE~/2/2. This is exactly 
equal but opposite to the axial mass flow in the inner region which is 

f -27teE I/~ h(~)r dr ,  

where h ( ~ ) =  1 is determined in the Ekman layer. For finite z there is no interchange 
between the two mass flows. That  the axial velocity is constant in the inner region is due to 
the Tay lo r -P roudman  theorem. However ,  there is a small viscosity u = O(E) and this causes 
the axial velocity in the inner region to diminish at a distance z = O(E-I) ,  that is where the 
upper  region V (Fig. 1) begins. The axial velocity in the Stewartson region diminishes with 
increasing z as a result of the widening of this layer proportional to z 1/3. In the upper region 
the two axial mass flows begin to annihilate each other.  

Numerical values for $~ are obtained by Romberg integration of the integral in (5.3). The 
infinite integration interval is ended when the integrand becomes smaller than 10 -9. Results 
for ~bl(~- ) are presented in Table 1 and Fig. 2. 

For  negative values of z(r  I < 0) we have 

1 
6 , ( ~ )  = ~ - 6 , ( - ~ ) .  

By expansion of the exponential in (5.3) we obtain in the limit z$0 

_ _ ~" + 0 ( ~ > ) .  
~°l(z)- 27r 
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Table 1. The function ~bl (r) 

0 0 
0.001 -0.000 158 744 
0.01 -0.002 505 524 
0.03 -0.014 295 372 
0.043 99 -0.016 061 169 
0.05 -0.015 834 700 
0.1 -0.006 200 428 
0.125 785 0 
0.25 0.025 184 891 
0.438 175 0.05 
1.339016 0.10 
5.205 917 0.15 

44.867 564 0.20 
0.25 

Negat ive  values of  ~1(~-) occur for 0 < 7 < 0.125 785. The streamlines 0 < ~1(~-) < 0.5 origi- 
nate from the E k m a n  layer by way of  the point r I = 0, z = 0. The main flow takes some fluid 
with it (negative values of  ~ )  which originates from the outer region. The minimal value of  
ff~ occurs for ~-= 0.04399 and this corresponds to a streamline with zero velocity. At  the 
other  side of  the Stewartson layer some streamlines with ~ > 0.5 exist, which means  that 
s o m e  fluid is attracted from the inner region. 

We can find the behaviour of  ~1 for large values of  ~- by using the series expansion for sin y 
in (5.3) .  We obtain 

f o  21/3 f o  ~__ 0 22n/3~2(n-1)/3 I = sin y e_y3r/2 dy = ( - 1 )  n e -~" dE 
y - - ~  = (2n  + 1)! ' 

-1.0 -0.5 0.0 0.5 1.0 rl  

Fig. 2. Streamlines in the r~ - z plane. 
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w h e r e  ~ = y3/2. In t roduc ing  ~r = u as a new var iable  the  integrals  lead to F-funct ions  and  the  

resul t  is 

2 1 ' 3 F ( 1 )  1 22/3F(~) 
I = + 

3 ¢  1/3 9 r  180,1-5/3 

and  

3 22/3F(~) r~ } 1 1 2 ' / 3 F ( ½ )  r I r ,  + . . . . . .  ( 5 . 5 )  
q 6 -  4 2~r 3 z 1/3 9z 180 z s/3 " 

F o r  r I > 0 the  radial  veloci ty  u~ is equal  to 

Ul = OI//Ioz = r~l dOldr - 4~r~l f ?  y2 sin y e -y3"/2 dy . (5 .6)  

F u r t h e r m o r e ,  u 1 is an odd  funct ion of  r 1, s o  u ( - r l )  = -u ( r l ) .  For  r $ 0  which occurs  if z$0 ,  
r # 0 but  also for  z finite and r I ~ 0% we find 

1 
U l =  27rr31 . (5 .7)  

F o r  r ~ oo we ob ta in  an express ion  in the s ame  way  as we did for  t) 1. T h e  result  is 

1 2 1 / 3  (31-) r 1 1 r 1 

u , = ~  3 3 ~ 7 + 1--dg j 3  . . . .  , (5.8) 

which is also ob t a ined  by direct  d i f ferent ia t ion  of (5.5).  Figure  3 shows u I as a funct ion of  rl 
fo r  s o m e  values  of  z. 

2.0 

1.5 

1.0 

0.5 

0.0 

-0.5 

U| 

u l ( - r 0  = - u l ( r 0  

t l , i ~ \  I 1 ~ _ . . 2 - - ~  

I I I I I I I | 

Fig. 3. T h e  rad ia l  ve loc i ty  u 1 as func t ion  of  r I for s o m e  va lues  of  z. 
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F o r  r~ > 0 the  axial  ve loc i ty  w I is equa l  to  

3z  d~b 1 3z F ~ 
_ [ y2 sin y e -y3~/2 d y  

= - -  = " ' ~  ~ - - 4  J U  Wl Or~ r~ 4zrr  I 
(5 .9)  

F o r  z = 0 this  gives  wl = 0, whi le  for  z finite and  r 1 ~ oe ('r----~ 0) we ob t a in  

3z  
WI -- Z l ~ r  4 • (5.1o) 

w I is an even  func t ion  of  r 1, so w(-r l )  = w(rl). 
Fina l ly ,  by  d i f f e r en t i a t i on  of  (4.7)  we have  for  z = 0, w 1 

- func t ion .  

. T h e  e x p a n s i o n  o f  w~ for  r---~ ~ b e c o m e s  

= ½6(r l ) ,  whe re  8(x)  is the  D i r a c  

1 f 2 1 / 3 F ( ½ )  r~ 22/3F(35-) r~ } WI = ~ ~ 3Z 1/3 3z + 3------~ Z 5 / 3  . . . .  " (5 .11)  

F i g u r e  4 shows w 1 as a funct ion  of  r 1 for  some  values  of  z. 

F o r  ca lcu la t ing  the  r e m a i n i n g  var iab les  o 1 and p~ we p r o c e e d  as fol lows.  In  o r d e r  to  

d i f f e r en t i a t e  w I to r 1, we r ep l ace  y by  o)r~ in (5.9)  

3z f :  _to3z/2 
Wl _ 4~'r1 o)2 sin o)r 1 e do ) .  

By  us ing  

d e-t°3z/2 3 

do) 2 
2 - c o 3 z / 2  

~ z e  

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 

-0 .1  

i i 

Wl 

wl(-r0 -- wl(r0 
N ~ =  0.025 

o J, o!o ._  , . ,  , .o ' 

i I i ! ! I I ! 

F i g .  4 .  The axial velocity w~ as function of r 1 for some values of z. 
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and  apply ing  partial in tegrat ion the result for  w~ becomes  

1 
l -~°3z/2 doo (5.12) Wl ~ ~ JO COS (.Dr I e 

T h e n ,  f r o m  (4.3) we obta in  

Opl 02W1 _ 1 ~ 0) 2 _o~3z/2 
az  - ar~ 2Ir  cos oor 1 e d w  . (5.13) 

Since direct  in tegrat ion to z p roduces  a divergent  integral,  we first calculate 

0zpl 1 
- [ w 3 sin wr  1 e -°~3z/2 doo 

Or I a z  27r ju 

and  then  in tegrate  to z. H e n c e  

OPl 1 
f~ 

- / sin torl{e -~3z/2 + C(r l )}  d t o .  (5.14) 
Or I 7r Jo 

A g a i n  f rom (4.3) 

01 - 27r sin t o r l {e  -'°3z/2 + C(r l )}  dto . 

F u r t h e r m o r e ,  we have 2u I = O2o1/Or 2 and thus 

1 for02 e -~°3z/2 1 fO -'°3z/2{ d2Cl~ u l = ~ sin tor 1 dto + ~ s i n  t o t  1 e to2C(rl)  --  --7-T-dr 1 j do~ . 

C o m p a r i n g  this result  with (5.6) we see that  the second term must  vanish. This leads to 

C ( r l ) = 0  since the possibilities C ( r l ) = s i n h  wr I or  c o s h w r  I are excluded as Vl---~0 for  
r I ~ oo. H e n c e  

1 f o  -Y3"r/2 v l = 2~.r a sin y e d y .  (5.15) 

Wri t ing (5.12) also in terms of  y,  it follows that  w 1 and v 1 are the real and imaginary  parts  of  

1 ~ " e -y3"r/2 
2zrr  I e -~y  d y  , 

which  is in a g r e e m e n t  with [3]. 

Finally,  (5.15) shows that  for  r$0  (z~0, r I > 0  or  z finite and rl---~oo ) we have 

1 

v I - 27rr 1 • 

T h e  expans ion  of  v I for  ~ - - - ~  is 

1 f F ( 2 )  r I 21/3F(4) 

V l =  37r~  21/3 z 2/3 6 

(5.16) 

3 5 } 
r 1 1 r~ (5.17) 

Z41~ "[- ~ Z 2 . . . .  . 
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Figure 5 shows v I as a function of r 1 for some values of z. v a is an odd function of r l ,  

v a ( - q )  = - v l ( r l ) .  
It follows also from (5.13) that 

O p l _  1 f o  ~ 2 -y3~-/2 
Oz 2rrr~ y cos y e d y .  

Expanding this again for r ~ oo the result is 

{ 2 21/3F(7) 4 } Opl _ 1 1 F (} )  r I r a 
Oz 37r Z 21/3 Z 5/3 -[- i----2--- z 7/3 ' 

which agrees with differentiation of (5.11). 
Integrating, we obtain as expansion of Pl near r~ = 0 

1 ( 3F(~) r~ 21/3F(7) r 4 } 
Pl - 3zr In Z + 24/3 Z2/3  16 Z 4/3 "1- " " " "}- Cl(ra) ' 

For  arbitrary values of r~ and z > 0, we can write 

1 f:~ Opl P~ = - 3---~ In z + Or---~ dr1 + C~(0). 

Since the pressure is only fixed up to an arbitrary constant, we may take Ca(0 ) =0 .  
Substituting the value for Opl/Oq from (5.14) with C(r~) - -0  and performing the integration 
to r~, we find for positive values of rl 

1 1 ; ~  1 - cos y e_y3,/2 
P l = -  3 - - - ~ l n z - - - J o  dy (5.18) 

7r y 

where again y has been written for tor 1. 

0.0 

-0.1 

-0.2 

-0.3 

-0.4 

-0.5 

-0.6 

-0.7 

-0.8 

-0.9 

0.5 1.0 1.5 2.0 2.5 r l  

\ / 7  -z--0.1 
i ~ z = O . O l  

- [ Vl(-rl) =-Vl(rl) 
/ i ,[z=0 z_-0 . . . . .  

Fig. 5. The azimuthal velocity v 1 as function of r I for some values of z. 
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In  o rde r  to inves t igate  the  b e h a v i o u r  of  Pl for  finite z and  r~--+ m, we have  to eva lua te  the  

in tegra l  in (5.18) for  small  values  of  7-. This  integral  is wr i t ten  as 

l i m { ~  le-y3"/2dy- - ~  c°SYe-y3~/2dy}, a > 0 .  
a~o y y 

(5.19) 

T h e  first in tegral  is 

fj le_y3r/2dy 1~½~ e-U du 1 ( 1 )  y 5 .', u g E1 a3r 

accord ing  to [6], f o rmula  (5.1.1) .  For  small  values  of  a we have ,  see [6], (5.1.11)  

1 ( 1 )  1{ 'n1 } 
E1 2 a37- = ~ 2 a37- + 0(a37-) , 

w h e r e  3, is Eu le r ' s  cons tant .  H e n c e  in the limit a ~ 0 

f j l  e_y3r/2 dy  = 1 1 1 Y - ~ 3, + ~ In 2 - In a - ~ In 7- + O(a37-) . 

F o r  small  values  of  7- the second integral  in (5.19) is r educed  as follows 

l im cos y e_y3~./2 dy = lim cos y dy  - 157- 2 + 0 ( 7  "4) , 
a~o y . ~ o  j .  y 

w h e r e  the  exponen t i a l  has been  expanded .  F r o m  [6], f o rmu lae  (5.2.27) and (5.2.16)  we have  
for  a---~ 0 

• j c o s  d y = - C i ( a ) = - 3 , - l n a .  Y 

Y 

T h e  conclus ion  is tha t  

fo 2 1 1 1 - c o s y  e _ y 3 ~ / 2 d y = ~  3 , + ~ I n 2 - ~ l n T - + 1 5 7 -  2 
Y 

and ,  subst i tu t ing in (5.18),  for  r - -+0  the pressure  b e c o m e s  equa l  to 

1 1 15z 2 
Pl = - --rr In r I - ~ (23, + In 2) 7rra6 " 

Since the  p ressure  is an even  funct ion of  r 1 we can wri te  for  17-1--,0 

1 1522 
Pl = - --  In Jr1[ - 0.1960341 6 • (5.20) 

"/T 'WF 1 

F o r  a rb i t r a ry  values  of  r, and z > 0  we have  (5.18).  Fo r  some  values  of  z,  p ,  is g iven as 
func t ion  of  r I in Fig. 6. I t  m a y  be  r e m a r k e d  tha t  (5.10) and  (5.20) satisfy the re la t ion  
apl/Oz = oZwl/Or~ in (4.3).  

T h e  infinitely large p ressure  at the singulari ty r I = 0, z I = 0 is the f u n d a m e n t a l  r eason  of  
the  dev ia t ion  of  the  flow f rom the E k m a n  b o u n d a r y  layer  toward  the S tewar t son  layer .  
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Pl 0.5 

0.4 _ ~ :  

0.3 

0.2 z~ 
0.1 

, / Z = I  

0.0 0 . 2 ~ . _ ~ 0  ' 

-0.1 

-0.2 

-0.0 

-0.4 

z = 0.01 

& 

pl(-rl) = pl(rl) 

1.0 1.2 1.4 1.6 

rl 

(6.1) 

(6.2) 

1 

27r(1 - r) ' 

3z 
27r(1 - r) 4 ' 

1 1 eE , /2  { 1  } p = ~ (1 - 6)2r 2 + ~ In E - 8 E  1/2 - -  In(1 - r) + 0.1960341 . 
~r 

In genera l ,  we can write in the inner  region 

1 e E , / Z r  2 = "~ + e E 3 / 2 ~ i  , 

u : e E 3 / 2 u i  , 

v = ( 1 -  e)r  + eE ' /Zv i  , 

W = - 8 E  1/2 -Jr E E 3 / 2 w i  , 

1 1 eE , /2  r . , /2 p = ~ (1 - e)2r z + ~ In E + elZ P i ,  

1 ,/2 ~=~E , 

U = e E  3/2 1 
27r(1 - r) 3 ' 

v = ( 1 -  e)r  + e E  '/2 

w = - e E  1 / 2 -  e E  3/2 

- 0 . 5  i i ! ! i i ! 

Fig. 6. The pressure p,  as funct ion o f  r I for  some values o f  z. 

6. The inner, outer and upper regions 

T h e  flow in the inner  region for  r~'l should be matched  to the flow in the Stewartson layer  
for  r l - - > - ~ .  With r,  = - E - ' / 3 ( 1 -  r) and taking into account  the even or odd  charac ter  of  
the funct ions,  we find f rom (4.2),  (5.7),  (5.10),  (5.16) and (5.20),  for  r~'l 
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where the limiting-value.s of  the variables u i etc. for r~'l are given by (6.1) while 
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z 
lim q'i = 
,rl 2rr(1 - -  r )  3 " 

The  equations to be satisfied by the variables are 

OPi 
2 V  i = - -  

Or ' 

2 U  i = --02Ui ÷ O ( o i )  
Or 2 -~r r '  

OPi = 0  , 
Or 

1 0 ~  
u i  --  w i  --  

r O z '  

1 O~Oi 

r Or 

(6.3) 

Since Pi is independent  of z, it follows from the first equation, that also v i is independent  of z 
which is the reason that the term 02vi/Oz 2 could be omitted in the second equation. Only ~b i 
and w i are linear in z, the other  variables being independent of z. 

In the outer  region we have 

= eE3/2Oo ' 

U = ,~E3/2Uo , 

v = (1 - e)r  + eE1/2v o , 

W = E E 3 / 2 W  0 , 

1 1 
p = ~ (1 - e)Zr 2 + ~ e E  1/2 In E + eE ' /Zpo .  

The limiting values for r$1 are 

z 1 1 
if°--> 27r(r - -  1 )  3 ' UO--> -- 21r(r - 1 )  3 ' Vo--> 27r(r -- 1) ' 

3Z {1  ln(r --1)  + 0.1960341} 
w°--+ 2"rr( r -  1) 4 ' P°--+ - ~ 

(6.4) 

The  variables in the outer  region also satisfy (6.3). Again q'0 and z 0 are linear in z, the other  
variables are independent  of z. 

The equations (6.3) are only modified when z b e c o m e s  O(E-1) .  We then have for the 
upper  region 

~b = eE1/2tbu , u = eE3/2Uu , v = (1 - e)r  + eE1/2vu , 

1 1 e E l ~  2 r l / 2  w = e E 1 / 2 w , ,  p = ~ ( 1 - e ) 2 r  2 + ~  l n E + e t :  p , .  

With z = E - l z ,  the equations become 

Opu 
2 v u -  Or ' 
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- -  O r  2 "~r ' 

3p.  O2Wu 1 3w.  
O Z  u O r  2 r O r  

1 a G 1 a~.  
U u = - -  _ _  W u = 

r O Z  u ' r O r  

Only the third equation is changed in comparison with (6.3). For zu$O the limits of qJu and 
w, are different in case r is smaller or larger than 1 

1 
r < l :  ~0.---~ r 2, w.- - -~- I  

r > l :  qJ.--*O, w.---~O. 

It follows that the solution in the upper region contains a singularity at the point r = 1, 
z ,  = 0. At the scale of the upper region, the Stewartson layer is reduced to the point r = 1, 
z u = 0. In the upper region it no longer exists as a layer but its influence in the whole region 
is apparent  through the singularity. The variable r = z/r31 of the Stewartson layer becomes 
z u / ( r -  1) 3 in the upper region. 

7. Second approximation in the Stewartson layer 

It was shown in Section 6 that the Stewartson layer gives rise to axial velocities O(E 3/2) in 
the inner and outer  regions. However,  in the inner region there is a more important  axial 
velocity w = - e E  l/z, due to the Ekman layer, which is lacking in the outer region. The 
second approximation in the Stewartson layer will show how the transition from w = - e E  1/2 
to w = o (E  ~/2) occurs. The fundamental equation is given by (4.6) as 

06qh O2qh = 3 05~01 (7.1) 
Or---~l + 40z---- T Or----~l . 

Boundary  conditions are 

z=-O: ~b2= r l U ( - r l )  , 

z --~ oo: qh is bounded ,  

r 1 -----> - -  o o "  ~t12 ----> / 1 , 

r l ~ :  ¢'2---" 0 • 

The  solution of ~2 is again found by aid of Fourier transformation 

F2(,o,z)- 1 $2(r1, z) e i~°rl dr I , 

The  transformed equation is 

I m w < O  
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d2F  
4 ~zz2 to6F 2 = - 3 i t o S F l  . 

Subs t i tu t ing  F 1 f rom Sect ion 5 we ob ta in  

4 d2F2 t o 6 F  2 - 3to4 -1°~13z/2 
dz  ------T - 2V-2--~ e 

D u e  to the  b o u n d e d n e s s  of  F z for  z ~ 0% the solut ion can be wri t ten in the  f o r m  

F 2 = A e -1'°13z/2 -t- Bz e -1'°13z/2 . 

Fo ur i e r  t r a n s f o r m a t i o n  of  the b o u n d a r y  condi t ion for  z = 0 yields 

F:(to,  0) = A - - -  
t o 2 ~  , 

while  subs t i tu t ion  of  F 2 in the different ial  equa t ion  gives 

31o, I 
B -  

8 X / ~ "  

T h e  so lu t ion  for  ~02 then  b e c o m e s  

1 f_~o~ ( 1 318-lZ)e-i'°qe-1'°13Z/2dt o ~b2(r,, z) = ~ ~ + 

1 [ f f ~  12 _io, rl(e_l~,13z/2 f~ 31tolz e_iO, r,e_l,,13~/2 dto - - - e  - 1 )d to  + 
27r to 8 

1 e -i '°q d t o ] .  +f\: 
T h e  last integral  has a double  pole  at z = 0 with res idue - i r ~ .  For  r~ < 0 the in tegra t ion  pa th  
is c losed by the  infinitely large semi-circle  in the half  p lane  I m  to > 0 and by the  semi-circle  in 
the  half  p lane  I m  to < 0 if r~ > 0. T h e  result  is 27rr~ U ( - r ~ ) .  In the o the r  integrals  we rep lace  
e -i°'r '  by cos tor~ - i s i n  tor~. R e m a r k i n g  that  the integrals  with cos torl are  even  in to but  
those  with sin tor t odd,  the result  is 

f ~ 3z f ~  _to3z/2 ~b2(r,, z) = 1  COS t°rl  (e -'°3z/2 1) dto + ~--~ to cos torl e d t o + r l U ( - r l )  
7r ~ toT - 

(7.2) 

E x p a n d i n g  the  exponen t ia l  we find for  z$0  

~b2(rl, z) = r l U ( - r l )  + -2---5 + O 
8 ~ r  1 

E x c e p t  for  the  first t e rm,  qJ2(rl, z) is even  in r 1. The  axial veloci ty  will be  calculated f rom the 

f o r m u l a  w 2 = -O~O2/Or I + r 10qJl/arl, see (4.5).  
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F r o m  (7.2)  and (5.2)  we have 

- fo 
002 _ 1 sin tot 1 (e_~3z/2 _ 1) d~0 - 
O r  I . f f  ~ t o  

0 ~ 1  - 1 

Or I 2~r 

1 
COS t o r l ( l -  e -~3z/2) d t o -  ~ 6 ( r , ) .  

to e sin tor 1 e -~3z/2 dto + U ( - r l ) ,  

Using 

~o sin dto = toF 1 T/" 
O~ "2 --  7 r U ( - r l )  

and 

~ c o s  tor 1 dto = 7r6(r 1) , 

we obta in  

l f o ( S i n t o r l  ) e - , O 3 Z / 2 d t o + 3 Z f o  2 .  -to3z/2 1 w 2 = ~ 2 --to r 1 cos tor 1 ~ to sin tor I e dto - -2 " 

Part ial  in tegra t ion of  the last integral gives 

1 f o (  sintor I ) e_,O3z/2 dto 1 
w 2 = ~ 4 --to r I cos tor 1 - -2 

o r  

1 i f (  s iny  ) e_y3~./2 1 z w z = ~  4 Y - c o s y  d y - ~  if r = - - 3 > 0  
r I 

and 

1 f o (  s i n y  ) eyar/2 1 z 
w 2 -  4~r 4 Y - c o s y  d y - ~  i f ~ - = - 3 < O .  

r l  

It is seen that  w 2 only depends  on ~-. For  ~-~0 we have 

7 7  
w2 = T~ + ° ( ~ 3 ) '  

while for  ~" < 0 

7T 
w2(~" ) = - 1 -  W e ( - 7  ) = - 1  + ~ + O(~ "3) 

holds.  Results  for  w E are p resen ted  in Table  2 and Fig. 7. 
T h e  cGntribution to w for  Ira]--)oo is 

{ 7z} 
eEl~2 - U ( - r l )  + 7----3 • 

47rr I 
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Table 2. T h e  func t ion  w z ( z  ), z = 0 .027171  g ives  m a x i m u m  o f  w z ( z  ) 
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w~(~) 

0 0 
0 . 0 0 0  01 0 . 0 0 0  005 570  

0 . 0 2 7  171 0 .041  872  659 

0 . 0 7 5  277  0 
0.1 - 0 . 0 2 3  631 987  

0 . 2 1 9  096  - 0 . 1  

0 .617  158 - 0 . 2  

2 .281  694  - 0 . 3  

19 .107  978  - 0 . 4  

- 0 . 5  

Matching to the inner region gives for r~'l 

W = - e E  1/2 - • E  3/2 7 z  
47r(1 - r )  3 

and the outer region 

w = e E  3/2 7 z  
47r(r -  1) 3 " 

This yields further terms in the expansions for r--~ 1 of the solutions in the inner and outer 
regions as given by (6.1) and (6.4). 

-1.0 -0.5 0.0 0.5 

Fig. 7. T h e  axia l  v e l o c i t y  w 2 in the r I - z p l ane .  

1.0 r l  
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The radial velocity follows from u 2 = OqJ2/Oz - r I Og,~/az. Using (7.2) and (5.6) the result 
turns out to be 

1 
f o  (3o9 cos ogr I + u2 - 87r o92r 1 sin ogrl) e - 0 ' 3 z / 2  do9 

o r  

1 f o  U 2 - -  87rr 2 (3y cos y + y2 sin y) e - y 3 ~ ' / 2  dy if ~" > 0 .  

u 2 is an even function of rl .  The contribution to u for [r~[---~oo is 

eES/6 5 
8"rrr~ ' 

which gives by matching to the inner and outer  regions a term 

eE3/2 5 
8~-(r - 1) 2 

in addition to the terms already obtained in (6.1) and (6.4). 
Af te r  e laborate  calculations along the same lines as in Section 5 we find the following 

results for P2 and v 2 

rl { f o Y ( 3 + c ° s ~ - 4 s i n Y e - y 3 " / 2 d y + C 3 }  -c 
P 2 -  27r l n z +  - if > 0 ,  

Y 

1 { f o 3 ( 1 - c o s y ) - y s i n Y  e_y3,/2dy+C3} r v 2 =  4rr l n z +  if > 0 .  
Y 

P2 is odd and v 2 is even in r 1 . For small numbers  of  r we obtain 

r 1 
P 2 =  ~ ( - 3 1 n r ~ + 2 7 ~  " 2 + C 4 ) ,  z$0 ,  

1 
/)2 = ~ ( - 3  In r 1 - -  135~ "2 + C 4 - 3 ) ,  ~'$0, 

where  C 4 = 4 - 2 3 ' - I n  2 - C  3. The constant C 3 is determined by the flow outside the 
Stewartson layer. 

Matching of P2 and v 2 gives further terms in the asymptotic expansions of Pi, P0,/)i and/)0 
for r---~ 1 in the inner and outer  regions. 

8. Conclusions 

A rotating disk placed in a fluid rotating coaxially with a slightly different angular velocity 
shows at its edge a Stewartson layer of w i d t h  O(E 1/3) and height O(E -1) provided 
]e[ < O(E1/6). This layer is due to the sudden deflection of the boundary layer flow into an 
axial flow if e > 0 and reversely if e < 0. The deflection is caused by a logarithmic pressure 

singularity at r I = 0, z = 0. 
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Velocity and pressure distributions in the Stewartson layer have been evaluated and 
calculated for some values of z as functions of r 1, see Figs 2 to 6. Due to the occurrence of 
the similarity parameter  ~- they have a simple analytic form. 

The  orders of magnitude of the various quantities in the Stewartson layer are 

stream function qJ O(E1/Z), 

radial velocity u O(E  1/2) , 

azimuthal velocity v O(EI /6 ) ,  

axial velocity w 0(E1/6), 

pressure p O(E 1/2) . 

The everywhere present azimuthal velocity v = ( 1 -  e)r and corresponding pressure p = 
1(1 - e)2r 2 have been left out of account. The orders of magnitude in the inner and outer  
regions are respectively 

~0 u v w p 

inner O(E 1/2) O(E  3/2) O(E 1/2) O(E ~/2) o ( e " 2 1 n e ) + o ( e ~ ' ~ ) ,  

outer  O(E  3/2) O(E 3/2) O(E 1/2) O(E 3/2) O(E1/21nE)+O(E1/2).  

The reduction of the axial velocity of  O(E 1/2) in the inner region to  O(E 3/2) in the outer  
region has been investigated with the aid of the second approximation of the solution of the 
differential equations, see Section 5. This approximation, which is valid for l el < O(E 1/2) 
gives contributions in the Stewartson layer of the following orders of magnitude 

~b u v w p 
O(E 5/6) O(E 5/6) O(E 1/2) O(E 1/2) O(E 5/6) . 

In the upper  region the orders of magnitude are the same as in the inner region, which 
means that w is also 0(E1/2). 

Note  added in proof  

It appears that the homogeneous differential equation 

060 02~.t 
a r---~ + 4 --O z 2 = 0  

has additional solutions. These might be excited by the Ekman layer at the singular point 
r I ----O, Z ~ 0 .  It means that the solution ~0 2 might be modified by an additional term 
containing an unknown factor. Whether  this is the case should follow from an investigation 
of the region connecting the Stewartson and Ekman layers. Such investigation is being 
performed.  
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